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Brown adipose tissue: endocrine determinants of
function and therapeutic manipulation as a novel
treatment strategy for obesity
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Abstract

Introduction: Recent observation of brown adipose tissue (BAT) being functional in adult humans provides a
rationale for its stimulation to increase energy expenditure through ‘adaptive thermogenesis’ for an anti-obesity
strategy. Many endocrine dysfunctions are associated with changes in metabolic rate that over time may result in
changes in body weight. It is likely that human BAT plays a role in such processes.

Review: In this brief review article, we explore the endocrine determinants of BAT activity, and discuss how these
insights may provide a basis for future developments of novel therapeutic strategies for obesity management.
A review of electronic and print data comprising original and review articles retrieved from PubMed search up to
December 2013 was conducted (Search terms: brown adipose tissue, brown fat, obesity, hormone). In addition,
relevant references from the articles were screened for papers containing original data.

Conclusion: There is promising data to suggest that targeting endocrine hormones for BAT modulation can yield a
cellular bioenergetics answer for successful prevention and management of human obesity. Further understanding
of the physiological link between various endocrine hormones and BAT is necessary for the development of new
therapeutic options.
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Introduction
According to the World Health Organization (WHO) re-
port, worldwide obesity rates have more than doubled
since 1980. Global figures from 2008 showed that 1.5 bil-
lion adults were overweight and that obesity affected 200
million men and 300 million women, with the numbers ex-
pected to rise exponentially [1]. Obesity is associated with
significant morbidity and mortality that result from the
related complications of type 2 diabetes mellitus (T2DM),
non-alcoholic fatty liver disease, cardiovascular events,
obstructive sleep apnoea, musculoskeletal and psychi-
atric diseases, and various malignancies [2]. In 2010,
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overweight and obesity were estimated to cause 3.4 million
deaths, 3.9% of years of life lost, and 3.8% of disability-
adjusted life-years (DALYs) worldwide [3]. Obesity, in
1980’s was limited to affluent countries such as North
America, Western Europe and Australasia, but now mani-
fests as a true pandemic, with its increasing prevalence in
developing countries such as India, China and Brazil, and
spreading even to sub-Saharan Africa [4,5], placing an
enormous financial burden on the global economy.
The management of obesity through lifestyle is notori-

ously difficult and the resulting effects on weight are vari-
able and often transient. Weight regain following weight
loss is common and results from a number of mechanisms
that redress any loss of energy storage capacity. Such mech-
anisms include changes in the levels of appetite-regulating
hormones following weight loss that encourage weight re-
covery [6]. Weight loss also reduces energy expenditure [7]
and brown adipose tissue (BAT) activity, and this com-
bined with enhanced appetite promotes weight regain.
Current therapeutic options for obesity management are
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limited following recent withdrawals of sibutramine and
rimonabant amid safety concerns, and problems relating
to the supply, unacceptable side-effect profile and long-
term efficacy of orlistat [8]. Despite its effectiveness as a
weight-loss intervention, bariatric surgery is only applic-
able to a sub-group of obese patients who meet funding
criteria and as such, does not represent a practical solu-
tion to the global obesity epidemic [9]. Given the limita-
tions of current therapies, the current global obesity
epidemic and escalating incidence of obesity-related
deaths, it is imperative to identify novel and effective
therapeutic options for obesity.
Obesity results when energy intake exceeds expend-

iture chronically. Therapeutic strategies for obesity have
mainly targeted caloric restriction through central appe-
tite suppression and inhibition of fat absorption [10].
Compared with those acting on central appetite regula-
tion, therapies acting peripherally may prove beneficial
whilst causing fewer harmful effects [11]. The body is,
by default, genetically predisposed to store energy in
preparation for prolonged periods of starvation [12].
Even minor weight-loss through appetite suppression is
often redressed through multiple peripheral counter-
regulatory mechanisms to maintain ‘isoenergetic’ condi-
tions [6]. Centrally acting drugs can potentially cause
adverse psychotropic side effects through cross-reactivity
with a variety of other receptors within complex central
circuits (such as the endocannabinoid receptor blocker,
Rimonabant) [10]. The concept of increasing energy ex-
penditure through therapeutic manipulation of periph-
eral mechanisms is therefore attractive and worthy of
focused research and development.
The main physiological function of BAT, to generate

heat for the organism to protect against development of
hypothermia, has been well understood for nearly 50 years
[13]. Recent studies using 18fluoro-labelled 2-deoxyglucose
(FDG) positron emission tomography computed tomog-
raphy (PET-CT) have demonstrated the presence of BAT
depots in the axillary, paravertebral, supraclavicular and
cervical regions in adult humans [14-16]. Data from vari-
ous animal studies have demonstrated that through BAT
activation, triglyceride stores within white adipose tissue
(WAT) can be utilized for heat generation through modu-
lation of adaptive thermogenesis [17]. Therapeutic ma-
nipulation of human BAT therefore represents a novel
mechanism to promote weight-loss. It is noted that endo-
crine disorders such as phaeochromocytoma and thyro-
toxicosis play a role in activating BAT [18,19]. To
maximize its future therapeutic potential, it is important
to appreciate the mechanisms by which endocrine dys-
function influences human BAT activity. In this brief re-
view article, we explore the main mechanisms linking
various endocrine hormones and human energy expend-
iture, mediated by effects on BAT activity.
BAT energetics
There are two main types of adipose tissue, white adi-
pose tissue (WAT) and BAT that have evolved for com-
pletely different purposes: to survive famine and prevent
hypothermia respectively. WAT and BAT, as energy stor-
age and thermogenic tissues respectively, therefore evolved
to protect mammalian organisms from important environ-
mental threats, including lack of food and exposure to
cold climates [20]. In addition to WAT and BAT, a third
intermediate-type of adipose tissue that is termed ‘beige’
has recently been identified. Adipocytes from beige adi-
pose tissue (BeAT) depots resemble white adipocytes but
possess the classical properties of brown adipocytes. Par-
tial success noted in animal models in converting WAT to
BeAT, has set a tone in BAT research field to replicate the
concept in humans too [21,22]. The characteristic features
of WAT, BAT and BeAT, and the origin of BAT are shown
in Table 1 and Figure 1 respectively.
Heat production plus external work account for the aver-

age daily metabolic rate or total energy expenditure (TEE).
TEE can be classically divided into resting metabolic rate
(RMR; normally 55–65% of TEE), activity related energy
expenditure (AEE; normally 25–35% of TEE), and diet-
induced thermogenesis (DIT) (about 10% of TEE) [23,24].
Alternative classification is obligatory energy expenditure,
which includes RMR, involuntary AEE and obligatory part
of DIT, and facultative energy expenditure, which includes
voluntary AEE, cold-induced non-shivering thermogenesis
(NST), cold-induced shivering thermogenesis, and faculta-
tive part of DIT [23].
Cold-induced activation of BAT has resulted in a high

incidence (60% to 96%) of detection as shown in recent
PET studies [25,26]. The presence of the 32 kDa un-
coupling protein-1 (UCP1) in BAT mitochondria enables
heat dissipation rather than generation of adenosine tri-
phosphate (ATP) [27], thereby resulting in non-shivering
thermogenesis (NST). Although controversial, BAT is
thought to influence DIT through sympathetic nervous
system activity via UCP1 [27,28]. Using PET studies with
radio-labeled fatty acid tracers, Ouellet et al. quantified
BAT oxidative metabolism, glucose and non-esterified
fatty acid (NEFA) turnover in 6 healthy human subjects,
demonstrating unequivocally that BAT contributes to
energy expenditure in humans [29]. Extrapolating rodent
experiments of thermogenic potential of BAT (300 W/kg),
Rothwell and Stock calculated that 40-50 g of BAT in
humans, might account for 20% of total energy expend-
iture [30]. Human PET studies estimated that maximal
activation of 63 g of BAT would result in 4.1 kg of
weight loss during one year [14]. Two independent but
congruent human studies estimated an energy expend-
iture of 200–400 kcal/day, a 10 to 20% rise in daily basal
metabolic rate through BAT activation [31,32]. There-
fore, the glucose disposal [33] and triglyceride clearance



Table 1 Morphological features of BAT, WAT and BeAT

WAT BAT BeAT

Cell shape Variable, but classically spherical Polygonal Resembles WAT

Cell size Variable, but large (25-200 μm) Comparatively small (15-60 μm) Variable

Nucleus Peripheral, flattened Central, round or oval in shape To be determined

Cytoplasm Thin, peripheral rim Large volume evenly distributed throughout cell To be determined

Lipid content Single large droplet occupying
up to 90% of cell volume

Multiple small lipid droplets To be determined

Mitochondria Few Abundant Intermediate

Endoplasmic reticulum (ER) Little, but recognizable as rough
and smooth ER

Present, but poorly developed To be determined

Tissue organization Small lobules of densely packed cells Lobular, gland-like To be determined

Cell content Multiple other cell types present Few other cell types present Few other cell types
present

Vascularity Adequate Highly vascularised To be determined

Gene expression PPAR-gamma, aP2, Adiponectin,
adipsin, perilipin

UCP-1, PGC-1alpha, β-3 adreno receptor
(ARB3), PRDM16, de-iodinase type II (D2)

Low UCP1, but activated
by cAMP stimulation

Cell markers CD34, ABCG2, ALDH EVA1, EBF3, FBXO31 CD137, TMEM26, TBX1
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properties of BAT [34], when fully utilized may act as an
energy sink. There are three ways in which enhanced
energy expenditure through manipulation of BAT could
be theoretically achieved: i) maximal and continual acti-
vation of BAT; ii) trans-differentiation of WAT to BAT
(to form BeAT), and; iii) transplantation of BAT stem cells.
The presence of BAT in adult humans represents a po-

tentially important therapeutic target for future novel
weight-loss strategies. The origins and functions of BAT,
WAT and BeAT differ in important ways, and studies on
the energetics of BAT have shown promising results. In
the next sections, we discuss the main endocrine determi-
nants of human BAT activity, and how each of these
mechanisms could be therapeutically manipulated for pro-
motion of weight-loss.

Review of endocrine determinants of BAT activity
Thyroid and BAT
We have known for over a century that thyroid hormone
(TH) increases metabolic rate and thermogenesis in
homeothermic species, and hence is an important physio-
logical modulator of energy homeostasis [35,36] TH stim-
ulates both obligatory and facultative thermogenesis [37]
and plays an important role in the regulation of lipid me-
tabolism within adipose tissue [38,39]. TH also enhances
oxidative phosphorylation through induction of mitochon-
drial biogenesis and modulation of the expression of genes
implicated in the regulation of the mitochondrial respira-
tory chain [40]. The weight gain and decreased cold toler-
ance observed in individuals with hypothyroidism, and the
weight loss and sweating/heat intolerance observed in pa-
tients with hyperthyroidism, are predictable clinical mani-
festations of alterations in BAT activity [41]. It follows
therefore that differences in BAT quantity and/or activity
between individuals may also influence the clinical mani-
festations of hypo- or hyperthyroid states. This may also
explain the inter-individual variability of weight changes
and heterogeneity of other clinical manifestations of dys-
thyroid states.
The physiological effects of TH are exerted at the level

of transcription through the thyroid receptors (TR): TRα
and TRβ [42]. TRβ mediates thyronine (T3) induced
UCP1 gene expression, whilst the TRα isoform through
T3 regulates facultative thermogenesis in BAT [43].
Type 2 deiodinase (D2) plays an essential role in mediat-
ing the full thermogenic response of BAT to adrenergic
stimulation via increased thyroxine (T4) to T3 conver-
sion within this tissue [44]. From a therapeutic perspec-
tive, it would be desirable to selectively activate TRβ for
UCP1 stimulation to avoid the widespread unwanted ef-
fects of TRα, the predominant receptor in non-BAT tis-
sues. Thyroid hormone analogues have been explored
with variable outcomes. GC-1 compound, a selective TRβ
agonist, induces UCP1 gene expression in rats [43], im-
proves glucose homeostasis [45], increases energy expend-
iture and reduces fat mass and plasma cholesterol [46].
High-fat feeding and concurrent treatment with the TRβ-
selective agonist GC-24 (with a 40-fold higher affinity for
TRβ than TRα) resulted in only a partial improvement
in metabolic control, probably related to acceleration
of resting metabolic rate [47]. Treatment with another
TRβ-selective agonist, KB-41 in rats resulted in a 6-8%
weight-loss with significant improvements in glucose
homeostasis, cholesterol and triglyceride levels without af-
fecting heart rate, probably due to lack of TRα effects [45].
There are also some promising data from human studies

that implicate thyroid hormones having important effects
on BAT activity. T3 treatment of differentiated human



Figure 1 Origin and transcriptional regulation of brown adipocyte. Multipotent mesenchymal stem cells commit to brown adipocyte
lineage following developmental triggers such as bone morphogenic proteins (BMP) and fibroblast growth factors (FGFs) leading on to cascade
resulting in a fully developed brown adipocyte. Myf5-expressing progenitors give rise to skeletal muscle and brown adipocytes in traditional sites
such as interscapular area. Myf5-negative progenitors are common precursors for both white adipocyte and recruitable brown adipocyte or beige
adipocyte. Beige adipocyte is formed from either the trans differentiation from white adipose tissue in response to cues such as Irisin or from
recruitable brown preadipocyte.
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multipotent adipose-derived stem cells in vitro induces
UCP1 expression and mitochondrial biogenesis through ef-
fects on TRβ [48]. Following thyroidectomy and subsequent
treatment with thyroxine replacement therapy in a patient
with papillary carcinoma, BAT activity was enhanced with
concurrent weight-loss and remission of T2DM [49]. Thy-
roxine may cause ‘brownification’ of WAT [48], and holds
immense potential given the mechanism of action in BAT,
and hence needs to be robustly tested in humans.

Catecholamines and BAT
Epinephrine causes vasodilatation and enhances glucose
and oxygen consumption in skeletal muscle [50] whilst also
enhancing thermogenesis in humans [51]. BAT is also acti-
vated in patients with phaeochromocytoma, (excess cat-
echolamine producing benign adrenal medullary tumour)
with increased UCP1 expression similar to levels in cold-
exposed rodents [18,52]. BAT activity is greater in patients
with phaeochromocytoma [53,54] due to over-activity of
the sympathetic nervous system and elevated levels of cir-
culating catecholamines, that in turn stimulate β3 adrener-
gic receptors, thereby activating UCP1 expression via cyclic
adenosine monophosphate (cAMP) and protein kinase-A
(PKA) pathways [55]. Hadi et al. demonstrated active BAT
to be present in 27% (26/96) of phaeochromocytoma pa-
tients undergoing FDG PET-CT scans [56], indicating
higher detection rates compared to 5.37% (106/1972) of all
cause PET-CT studies reported by Cypess and colleagues
[16]. Recent human observational studies demonstrate a
correlation between plasma metanephrine levels and BAT
activity [57].
Nor-epinephrine action on β3-adrenergic receptor in ma-

ture human brown adipocyte is the most studied pathways.
β3-adrenergic receptor would appear to be a convenient
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therapeutic target based on evidence from rodent studies
using “selective” β3-agonists (CL-316,243) [58] and knock-
out mouse models [59]. β3-agonists have not yielded de-
sirable results in humans due to differences in β3-receptor
binding properties in humans and rodents. Second-
generation β3-agonist trials in humans were unsuccessful
due to poor oral bioavailability and unfavorable pharmaco-
kinetics [60]. Another β3-agonist, L-796568, showed an ini-
tial increase in energy expenditure effect in 12 healthy
obese subjects that failed to be sustained beyond 28 days
[61,62]. Catecholamines may also ‘brownify’ WAT. Two
case reports of extensive brown fat deposits in omental and
mesenteric regions detected on human FDG-PET scans in-
dicate a possible role for catecholamines in the ‘browning’
of WAT [63,64]. Therapeutically, catecholamine-like mol-
ecules may trans-differentiate WAT into BeAT, but such
an approach would need to avoid the associated sym-
pathomimetic effects to be safe.

Glucocorticoids and BAT
Both BAT and WAT contain glucocorticoid receptors
[65]. Excessive levels of glucocorticoids increase WAT
mass and result in weight gain [66]. Conversely, gluco-
corticoids have an inhibitory effect on BAT activity in ro-
dent models [67]. Glucocorticoids enhance appetite,
stimulate lipolysis, suppress thermogenesis [68] (specific-
ally facultative thermogenesis [69]) and profoundly sup-
press norepinephrine-induced UCP1 activation [67].
Glucocorticoids also inhibit the expression and function
of β1 and β3 adrenergic receptors within BAT. [70,71]
Corticosterone reduces NST and increases lipid storage
within BAT in an in vivo rodent study, possibly as a re-
sult of steroid-induced hyperinsulinaemia [69]. Within
rodent models, it has been observed that adrenalectomy
results in stimulation of BAT thermogenesis and also
weight-loss [72]. This mechanism is probably mediated
through removal of glucocorticoid-induced hypothal-
amic inhibitory influences on BAT activity, and is re-
versed following glucocorticoid administration [72,73]. A
similar reduction in body fat mass was seen in a 46-year
old female with Cushing’s syndrome following adrenal-
ectomy [74]. The therapeutic challenge here would be to
develop the beneficial effects of steroid depletion on me-
tabolism and adipose-regulation whilst avoiding its po-
tentially life-threatening effects.

Mineralocorticoid and BAT
Mineralocorticoid receptors in rodent BAT, were first
demonstrated by Zennaro and colleagues [75]. Following
aldosterone treatment of a T37i cell line derived from
hibernoma in mice, there was increased expression of
adipogenic genes such as Lpl (lipoprotein lipase), PPAR-γ
(Peroxisome proliferator receptor activated-gamma) (PPAR-γ)
and aP2 (adipocyte-specific fatty acid binding protein)
[75,76]. Treatment with aldosterone also results in in-
hibition of Ucp1 expression, favouring lipid storage rather
than heat dissipation [77,78]. Within WAT, aldosterone
induces inflammation resulting in the release of pro-
inflammatory cytokines such as Interleukin-6 (IL-6),
tumour necrosis factor-alpha (TNF-α) and Monocyte
chemo attractant protein (MCP-1) [79]. Aldosterone also
appears to inhibit thermogenesis within BAT, and also in-
hibits the differentiation of WAT into BAT [80]. Given
that mineralocorticoids have a negative effect on BAT,
it follows that aldosterone antagonists may represent
a combined therapy for both hypertension and obesity
(through possible activation of BAT). This also supports
the findings that high aldosterone levels are noted in
obesity-induced hypertension in humans, which reverses
on weight loss [81].

Growth hormone/Insulin Growth Factor-1 and BAT
BAT-status in growth hormone (GH)-deficient patients and
acromegalics remains unknown. GH replacement in GH-
deficient humans results in sustained improvement of body
composition and reduction of insulin resistance [82,83].
Conversely, GH excess in acromegalics promotes insulin
resistance [82], resulting in dysglycaemia and hyperlipid-
aemia. GH replacement (1 mg/kg/day) for 10 days in ex-
perimental mice resulted in significant reduction of WAT
mass, increased skeletal weight and reduction of insulin re-
sistance. Despite an increase in Ucp-1 mRNA by 2.8 fold,
there was no change in the inter-scapular brown fat mass
[84], although a substantial increase (2 to 6 fold) in inter-
scapular brown fat mass was noted at higher doses of GH
(3.5 mg/kg/day).
Insulin Growth Factor-1 (IGF-1) receptors are highly

expressed in the plasma membrane of rat brown adipo-
cytes [85]. In vitro studies in murine foetal brown adipo-
cytes have shown that IGF-1 is intensely mitogenic and
prevents TNF-α induced apoptosis [86,87]. IGF-1 induces
the expression of Ucp-1 and CCAAT/enhancer binding
protein alpha (C/EBP-α) in rat brown adipocyte primary-
cell cultures [88]. Transient up-regulation of Igf-1 gene ex-
pression and BAT hyperplasia was noted in rats exposed
to cold (4°C) in the first 48 hours [89]. One of the factors
influencing the dramatic rise in human foetal UCP-1 con-
tent during late gestation, especially prior to birth, is
thought to be due to increased IGF-1 and IGF-2 levels
[90]. There may therefore be a role for IGF-1 in BAT dif-
ferentiation and activation, although the precise molecular
mechanisms remain unclear. As a therapeutic strategy, the
effect of GH or recombinant human IGF-1 (or truncated
IGF-1) on BAT and WAT functioning is worth exploring.

Prolactin and BAT
Functional prolactin receptors (PRLR) are highly expressed
in both WAT and BAT and are essential for adipogenesis
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and adaptive thermogenesis [91]. Prolactin plays import-
ant roles in carbohydrate metabolism through its effects
on pancreatic β-cell mass and energy homeostasis through
lipid metabolism [92]. Prolactin suppression, through use
of dopamine agonists in hyperprolactinaemic patients, re-
sults in metabolic effects [93]. Lactation in experimental
mice is strongly and negatively associated with expression
of thermogenic genes in BAT [94]. PRLR−/− male mice
subjected to a high fat diet for 16 weeks exhibited resist-
ance to weight-gain and a reduction in WAT compared
to wild-type mice. These mice also showed 2–3 fold
increased expression of BAT-specific markers (PR do-
main containing 16 [PRDM16], UCP1, PPAR-coactivator
1-alpha [PGC1α]) and brown-like adipocyte foci, indicat-
ing a possible role in BeAT differentiation from WAT
[95]. Further studies are required to establish whether
prolactin blockade by either dopamine agonists or pure
prolactin receptor antagonists may represent a targeted
approach for browning of human WAT.

Sex hormones and BAT
Androgen and oestrogen receptors (ERα) are expressed
in BAT in both sexes [96]. Furthermore, sex hormones
play an important role in the BAT thermogenic program
by acting at several steps of the lipolytic signal cascade
and on UCP1 transcription control. Observations such
as cessation of ovarian function at menopause resulting
in weight-gain, loss of insulin sensitivity and increased
incidence of cardiovascular disease [97], coupled with
greater BAT activity in young females in PET-CT studies
[16], fuel the argument that ovarian hormones probably
influence BAT function. Ovariectomy in female rodents
reduced BAT mitochondrial functionality through reduc-
tion in the oxidative capacity and anti-oxidant defenses.
Furthermore, 17-β oestradiol (E2) supplementation par-
tially reversed these effects indicating oestrogen’s partial in-
fluence on BAT [98]. There may also be non-oestrogenic
ovarian signals stimulating BAT activity [98]. Interestingly,
in vitro cell culture studies by Rodriguez-Cuenca show a
dual effect of 17-β oestradiol on the mitochondrial bio-
genic program [99,100].
Addition of testosterone reduced norepinephrine-induced

Ucp1 mRNA expression in a dose-dependent manner in
cultured rodent brown adipocytes, and these effects were
reversed by flutamide (an androgen receptor antagonist)
[101]. Furthermore, testosterone reduces the thermogenic
and lipolytic capacity of BAT [100]. In contrast, proges-
terone is shown to have the opposite effect to that of
testosterone on brown adipocytes [101] by positively stimu-
lating mitochondriogenesis and BAT differentiation as
demonstrated by an increase in the mRNA expression
of the GABPA-TFAM axis and PPAR-γ, respectively
[99]. These apparent opposite influences of testosterone
and progesterone on BAT activity may explain the gender
dimorphism displayed by BAT in human PET studies [16,102].
Dehydroepiandrosterone (DHEA, a precursor sex steroid),
when administered to obese and lean rats caused reduced
food intake and enhanced energy expenditure resulting in
weight-loss through increased expression of Pgc-1α, Ucp1
and β3-Ar [103].
In summary, these animal studies demonstrate variable

effects of sex hormones on BAT activity: testosterone ap-
pears to have a negative influence, oestrogen probably
has a dual effect and progesterone and DHEA both ap-
pear to have positive influences on BAT activity. How-
ever, the increase in both, BAT amount and BAT activity
in both sexes in human adolescents, (during peak surge
of sex hormones) [104] fuels speculation that sex hor-
mones may have a strong influence on BAT. Therefore
it is worth exploring the influences of flutamide, select-
ive oestrogen-receptor modulators (SERMs) and DHEA
on human BAT activity.

Insulin and BAT
In cultured murine brown and white adipose tissue, insulin
has a role in differentiation of pre-adipocytes into adipo-
cytes [105]. Furthermore, insulin-signaling in BAT is similar
to that of WAT and other tissues, displaying similar ana-
bolic effects of glucose uptake and lipid accretion [106].
The studies suggest that uptake of glucose into BAT is both
insulin-mediated (mainly occurring in non-thermogenic
conditions) and norepinephrine-mediated (occurring dur-
ing thermogenic conditions) [107]. In rodent models, BAT
is shown to be one of the most insulin-responsive tissues
with respect to glucose-uptake [108] and is mediated via
GLUT4, similar to that in WAT [109].
Animal studies suggest that chronic insulin deficiency re-

duces the thermogenic capacity of BAT [110,111]. Further-
more, in type 1 diabetes mellitus glucose homeostasis is
reverted to normalcy by increasing BAT quantity [112].
Contrarily, compensatory hyperinsulinaemia induces apop-
tosis of endothelial cells in rat BAT, thereby reducing BAT
quantity [113]. This may explain reduced BAT activity ob-
served in insulin-resistant states such as human obesity
and T2DM in human PET-case series [16,102]. In human
PET studies, insulin-mediated glucose-uptake by BAT in-
creased 5-fold (independent of perfusion) in comparison
to WAT, and gene expression of GLUT4 (Glucose trans-
porter type 4) was higher in BAT than WAT [33]. In sum-
mary, it appears that insulin is required in maintenance of
BAT thermogenic capacity, but the potential therapeutic
role of insulin and insulin-related molecules in BAT ma-
nipulation is yet to be determined.
Central or peripheral intravenous leptin administration

in rats is shown to increase insulin stimulated glucose util-
isation, and to favour expression of uncoupling proteins
predominantly through central pathways of increasing
sympathetic tone [114,115]. However, the lack of success
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of human recombinant leptin infusions on weight loss in
obese subjects [116], and adverse cardiovascular profile of
hypertension, left ventricular dysfunction, and possible
cardiovascular risk [117] may need to be factored in for
contemplating leptin route of BAT activation. Adiponectin
is noted to inhibit UCP-1 gene expression by suppression
of β3-adrenergic receptor in rats [118]. Conversely, adipo-
nectin levels were significantly higher in BAT compared to
WAT in active phaeochromocytoma patients, and conse-
quently serum adiponectin levels reduced markedly fol-
lowing adrenalectomy [119]. The relation between BAT
and adiponectin in humans is yet to be clarified before
considering on therapeutic prospects.

Endocannabinoids and BAT
Acting centrally and peripherally, the endocannabinoid
system positively regulates appetite and energy balance
[120] and has a role in adipose tissue metabolism [121],
mainly through cannabinoid receptors (CB1 and CB2),
and their natural endogenous ligands anandamide and
2-arachidonoyl glycerol [120]. In rodents, weight-loss as-
sociated with chronic CB1 antagonism was accompanied by
increased energy expenditure, enhanced insulin-stimulated
glucose utilisation, and marked activation of BAT thermo-
genesis [122]. Similar mice studies have shown a sustained
increase of BAT temperature and up-regulation of UCP1
on CB1 blockade [123]. Through peripheral CB1 recep-
tor inhibition, in vitro murine white adipocytes trans-
differentiate into a mitochondria rich, thermogenic BAT
phenotype [124]. Experiments with BAT denervation have
attenuated such browning responses, indicating that cen-
tral regulation is essential. Recent withdrawal of rimona-
bant from the market owing to concerns regarding an
adverse psychotropic profile, poses a problem for CB1 be-
ing a target for activation of brown fat, unless a more
Table 2 Effect of hormones on BAT and possible therapeutic

Hormone Influence on BAT Probab

Epinephrine +ve Selectiv

T3 +ve TR β se

Testosterone -ve To be d

Estradiol +/− (? dual effect) Selectiv

Progesterone +ve To be d

DHEA +ve To be d

IGF-1 Probably + ve Recomb

GH +ve at higher dose To be d

Insulin Unclear To be d

Cortisol -ve To be d

Prolactin -ve Bromoc

Aldosterone -ve Epleren

Endocannabinoids -ve Periphe
selective peripheral blocker of CB1 is identified. Table 2
enlists effect of various hormones on BAT and possible
therapeutic options through manipulation of individual
hormonal actions.

Current trends in BAT therapeutics
Given that adult humans have BAT, it is important to ex-
plore BAT manipulation as a means of promoting weight-
loss through enhanced energy expenditure via BAT
manipulation. In addition to augmentation of BATcontent
and/or enhancement of BAT activity, other approaches in-
clude trans-differentiation of non-BAT progenitors into
BAT pre-adipocytes, and surgical implantation of BAT.
Development of novel BAT-related therapies will require a
complete understanding of the embryological and tran-
scriptional mechanisms of BAT specification and develop-
ment in human models. We also need to characterize and
confirm the physical and genetic attributes of BAT includ-
ing anatomical and histological distributions of human
BAT. Further challenges will be to develop a sustained
long-term BAT stimulating or recruiting molecular circuit
with adequate knowledge of counter-regulatory mecha-
nisms for an acceptable safety profile, and to identify a re-
liable and safe imaging modality to monitor the effects of
such therapies on BAT once developed and administered.
Several transcriptional regulators of brown adipocyte dif-

ferentiation are described in rodents, with some revealing
promising effects even in human models. Irisin is a 112-
amino-acid polypeptide hormone, and is a cleaved and se-
creted fragment of fibronectin type III domain containing
5 (FNDC5) membrane protein, in turn released by muscle
through increased PGC-1α expression following exercise
in both rodents and humans [125]. Irisin showed a power-
ful browning effect on certain white adipose tissues in
mice, both in culture and in vivo [125]. Human irisin is
options

le BAT therapeutic suggestions

e human β3 receptor agonists

lective agonists- GC-40, KB-41

etermined

e estrogen receptor modulators (SERM)

etermined

etermined

inant human IGF-1 or truncated IGF-1

etermined

etermined

etermined

riptine, pure prolactin receptor antagonists eg., Δ1–9-G129R- hPrl (Δ1–9)

one, Spironolactone

ral CB1 antagonists
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believed to be identical to mouse irisin, and in healthy
adult subjects showed a 2-fold increase in plasma levels
following 10 weeks of supervised endurance exercise
training, as compared to the non-exercised state [125].
This PGC-1α dependent myokine alludes to the super-
added beneficial effects of exercise via BAT, which need to
be further explored.
The PRDM16-C/EBP-β transcriptional complex acts in

Myogenic Factor-5 (Myf5) positive myoblastic precur-
sors or pre-adipocytes to drive the thermogenic program
with co-activation of PPAR-γ and PGC-1α [126,127]. The
cAMP-dependent thermogenic program is potentiated by
Forkhead Box Protein C2 (FOXC2) [128] and PRDM16
and repressed by receptor-interacting protein-140 (RIP140)
[129] (Figure 1). Other transcriptional regulators of Bone
Morphogenic Protein-7 (BMP7) [130], Fibroblast Derived
Growth Factor-21 (FGF21) [131], PPAR-γ ligands [132]
and Atrial Natriuretic Peptide (ANP) [133], have been de-
scribed in rodents. The transcripted cells through these
various regulators are termed as BeAT as opposed to clas-
sical BAT and the success of these compounds depend
upon extrapolating the gains in human models.
The discovery of brown adipocyte stem/progenitor

cells, CD34+ in skeletal muscle [134] and human multi-
potent adipose derived stem cells (hMADs) in subcuta-
neous tissue [135] in adult humans, serve as novel mo-
lecular targets for the development of BAT therapeutics
as they have self-renewing capacity, and hence are ex-
pandable. In response to specific agents, muscle-derived
CD34+ cells differentiate exclusively into brown adipo-
cytes [134]. The WAT-derived hMADs, in contrast, first
differentiate into WAT and following chronic exposure
to PPAR-γ co-activators, gain brown adipose phenotype
[135]. These human cell models provide a unique oppor-
tunity to study the formation and energy dissipation
functions of human brown adipocytes, whilst simultan-
eously exploring therapeutic options. Such cells can po-
tentially be externally induced into BAT, expanded and
implanted back as an autologous implantation for meta-
bolic beneficial effects as shown in recent mouse models
[136]. Subcutaneous transplantation of embryonic BAT
corrected type 1 diabetes in immune-competent mice as
evidenced by reversal of diabetes symptoms, weight re-
gain and normalization of glucose tolerance and the
mice that remained euglycaemic 6-months following the
procedure [137].

Conclusion
There is compelling evidence to suggest that targeting
cellular bioenergetics will yield an effective anti-obesity
therapy. There are also complex practical concerns to be
addressed. Recent key advances in the fields of molecu-
lar cell biology and metabolic science have raised rele-
vant questions relating to the duration of the acquired
BAT-like properties of cells following transcriptional regu-
lation, the long-term fate of transcriptionally converted
non-BAT (BeAT) tissues, the total amount of inactive
BAT in humans and the fate of inter-scapular BAT in in-
fants. Compensatory enhancement of appetite through
central feedback regulation via complex neurological cir-
cuits following sustained chronic peripheral energy loss is
a concern. Therefore, combining novel therapies that en-
hance BAT activity with an appetite-suppressant may be
required. Therapeutic manipulation of peripheral energy
expenditure through increasing BAT quantity and/or ac-
tivity remains one of the most promising strategies for the
successful prevention and management of human obesity.
Although there are significant hurdles, there is also great
potential for BAT manipulation to promote weight-loss
through enhanced facultative metabolism.
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